Brother Bear

a true Menominee story retold by
 Louise Bear and Terri Zhuckkahosee

A long time ago on the Menominee Indian Reservation there lived a very old couple. The husband loved hunting and fishing. One winter night he decided to go on a hunting trip. So the next day his wife packed some warm clothes and lots of dried meat and berries for him and he set off on his trip.
He followed deer trails through the woods for a long time without seeing a deer. Then, at the edge of a meadow, he spotted one. Carefully, he aimed the arrow in his bow and let it fly. The arrow struck the deer but only wounded it. The deer leaped into a thicket of trees, and the old man quickly followed. He tracked the deer for many miles but eventually lost its trail. When he finally decided to return home, he realized that he was lost. The old man panicked and started to run, but he could not find a familiar trail. The old man remained lost for many days.
Late one afternoon, while trying to save time, he decided to walk across a lake. He had not gone far, when suddenly he broke through a weak spot in the ice! He carefully pulled himself from the water and crawled to shore. There, he took off his snowshoes and other heavy clothing and started walking. He became very cold and tired. Fortunately, he noticed a small cave and went inside. A bear was hibernating in the cave, but that didn't bother him. The old man cuddled close to

Join: Result Unknown

The old man lay next to the bear eating berries. First he ate \qquad berries. Then he ate \qquad more. How many berries did the old man eat?
Separate: Result Unknown
The old man had ___ berries. He ate ___ of them.
How many berries didn't he eat?
Part Part Whole: Whole Unknown
The old man has \qquad blueberries and \qquad strawberries. How many berries does the old man have?
Compare: Difference Unknown
The old man saw \qquad crows and \qquad blue jays.
How many more blue jays than crows did the old man see?

Multiplication

There were \qquad oak trees. In each oak tree there were \qquad blue jays. How many blue jays were there altogether

Measurement Division

The old man gave \qquad berries to some animals. He gave \qquad berries to each animal. How many animals got berries?

Two-Step Problem

To celebrate the old man's safe return, the old lady held a feast. \qquad friends came to the feast. Each friend ate \qquad pieces of fry bread. There were \qquad pieces of fry bread leftover. How many pieces of fry bread had the old woman fried?

PROBLEM-SOLVING SITUATIONS		
JOINING PROBLEMS		
Join: Result Unknown (JRU)	Join: Change Unknown (JCU)	Join: Start Unknown (JSU)
- Grandmother had 5 strawberries. Grandfather gave her 8 more strawberries. How many strawberries does Grandmother have now? $5+8=$	- Grandmother had 5 strawberries. Grandfather gave her some more. Then Grandmother had 13 strawberries. How many strawberries did Grandfather give Grandmother? $5+\square=13$	^ Grandmother had some strawberries, Grandfather gave her 8 more. Then she had 13 strawberries. How many strawberries did Grandmother have before Grandfather gave her any? $\square+8=13$
SEPARATING PROBLEMS		
Separate: Result Unknown (SRU)	Separate: Change Unknown (SCU)	Separate: Start Unknown (SSU)
- Grandfather had 13 strawberries. He gave 5 strawberries to Grandmother. How many strawberries does Grandfather have left? $13-5=$	- ,Grandfather had 13 strawberries. He gave some to Grandmother. Now he has 5 strawberries left. How many strawberries did Grandfather give Grandmother? $13-\square=5$	^ Grandfather had some strawberries. He gave 5 to Grandmother. Now he has 8 strawberries left. How many strawberries did Grandfather have before he gave any to Grandmother $\square-5=8$

PART -PART -WHOLE PROBLEMS

Part-Part-Whole: Whole Unknown (PPW:WU)

- Grandmother has 5 big strawberries and 8 small strawberries. How many strawberries does Grandmother have altogether?

$$
5+8=\square
$$

Part-Part-Whole: Part Unknow (PPW:PU)
\bullet,Grandmother has 13 strawberries. Five are big and the rest are small. How many small strawberries does Grandmother have?

COMPARE PROBLEMS

Comp. Difference Unknown

- $\boldsymbol{\bullet}$,Grandfather has 8 strawberries. Grandmother has 5 strawberries. How many more berries does Grandfather have than Grandmother?

$$
8-5=\square \text { or } 5+\square=8
$$

$13-5=\square$ or $5+\square=13$
Comp. Quantity Unknown
Comp. Referent Unknown
^ Grandmother has 5 strawberries. Grandfather has 3 more strawberries than Grandmother. How many strawberries does Grandfather have?
^ Grandfather has 8 strawberries. He has 3 more strawberries than Grandmother. How many strawberries does Grandmother have?

$$
5+3=\square
$$

$$
8-3=\square \quad \text { or } \quad \square+3=8
$$

MULTIPLICATION \& DIVISION PROBLEMS

Multiplication

- Grandmother has 4 piles of strawberries. There are 3 strawberries in each pile. How many strawberries does Grandmother have?
$4 \times 3=\square$

Measurement Division - Grandmother had 12 strawberries. She gave them to some children. She gave each child 3 strawberries. How many children were given strawberries?

Partitive Division

- •,Grandfather has 12 strawberries. He wants to give them to 3 children. If he gives the same number of strawberries to each child, how many strawberries will each child get?
$12 \div 3=\square$
Problem chart based on Cognitively Guided Instruction Problem Types (Carpenter et al., 1996)

UNDERSTANDING THE STRUCTURE OF WORD PROBLEM What makes a problem easy or difficult?

A goal of Cognitively Guided Instruction is that young children become independent problem solvers who are able to approach and solve word problems without having to rely on having a teacher tell them how to do it. However, a number of factors influence whether a problem is appropriate for a child to solve independently. Understanding these factors helps the teacher decide which word problems to use during instruction. These factors include the following:

If the Problem Involves a Situation That the Child Can Act Out

A problem that can be acted out is easier for a child to solve than one that cannot be acted out. For example, the first of the following two problems is easier. Here the child can actually pretend that s/he is giving strawberries away. The second problem is more difficult because it requires more thought to make sense of the question being asked.

SRU (Action Direct):

Grandfather had 8 strawberries. He gave 3 of them to Grandmother. How many strawberries does Grandfather have now?

SRU (Action Indirect):

Grandfather gave 3 strawberries to Grandmother. He had 8 strawberries. How many strawberries does Grandfather have now?

If the Child is Able to Model the Problem with Counters or Drawing

When the quantities given in a problem refer to a complete set of physical objects or amounts, the problem can be modeled directly. When a word problem can be directly modeled, that is, represented in some concrete way on fingers, with tally marks, drawings, or by manipulating counters, the problem is easier. The first of the following two problems is easier because the wording guides the child's modeling. When modeling this problem with counters, a young child might choose to set out the two quantities, lining them up side by side, and then match them to determine the difference. Solving the second problem relies on the child's ability to mentally determine the relationship between quantities within the problem.
CDU direct modeling situation:
Grandfather has 8 strawberries. Grandmother has 5 strawberries. How many more strawberries does Grandfather have?
CRU situation that requires ability to analyze:
Grandmother has 5 strawberries. She has 3 fewer strawberries than Grandfather. How many strawberries does Grandfather have?

The Location of the Unknown Influences the Problem Difficulty

Because young children solve problems in the order that they hear them, problems that are worded in such a way so that the unknown quantity is located at the end (first example below) are easier to solve. Problems with the missing quantity in the middle (second example below) or at the beginning (third example below) are more difficult.

As the child's understanding of quantity and relationships among quantities develops, s / he becomes able to make sense of the entire question, represent the situation, and plan a solution. When a child is able to do these steps $s / h e$ will not need to use manipulatives. Rather, the child will use his or her own unique way of mentally manipulating quantities.

SRU location of unknown at end of problem: (8-3= Grandmother had 8 strawberries. She gave 3 to Grandfather. How many strawberries does Grandmother have now?

SCU location of unknown in middle of problem: (8-_=5)
Grandfather had 8 strawberries. He gave some to Grandmother. Now he has 5 strawberries. How many strawberries did Grandfather give to Grandmother?

SSU location of unknown at start of problem: ($\quad-3=5$)
Grandfather had some strawberries. He gave 3 strawberries to Grandmother. Then he had 5 strawberries left. How many strawberries did Grandfather have before sharing with Grandmother?

Children's Intuitive Solution Strategies

Extensive research has documented the developmental thinking processes that children go through when learning to solve word problems (Carpenter et al., 1992). It is important to emphasize that these processes are intuitive, ones that are not taught to the student by a teacher.

To effectively promote the development of mathematical reasoning without usurping the student's intuitive thinking, a teacher must clearly understand the relationships among the different types of word problems (discussed in the previous sections) and the developmental stages of children's thinking. Detailed descriptions of how children's solutions vary depending on their developmental ability are provided in the following sections.

Relating Solution Strategies to the Developmental Stages of Mathematical Reasoning

The following word problems are used to demonstrate how children at different developmental levels will use different strategies when solving the same problems. The strategy that the child uses indicates the child's stage or level of development.

Join: Result Unknown (JRU)
Grandfather had 6 strawberries. Grandmother gave him 5 more. How many strawberries does Grandfather have now?
Separating: Result Unknown (SRU)
Grandmother had 11 strawberries. She gave 5 to Grandfather. How many strawberries does Grandmother have now?

Developmental Level I Direct Modeling

A child using a Direct Modeling strategy represents each number in the problem with concrete objects. In the following examples, the child solves the Join Result Unknown (JRU) and the Separate Result Unknown (SRU) problem given above by modeling with counters.

Child's Solution to JRU

"Grandfather had 6 strawberries. strawberries.
One, two, three, four, five, six." (The child sets our 6 counters.)
"Grandmother gave him five More. One, two, four, five." (Child sets out 5 counters and then pushes both sets together and counts all of the counters.)
"Now he has 11 strawberries."

Child's Solution to SRU

"Grandmother had 11

One, two, three, four, five, six, seven eight, nine, ten, eleven."
(Child sets out 11 counters.)
"She gave 5 to Grandfather. One, two, Three, four, five." (Child counts out and removes 5 counters from the group of 11 and counts the remaining counters.) "Now she has. . . one, two, three, four, five, six. She has six."

Developmental Level III Deriving

A child possessing good number sense is able to solve problems in flexible ways, often breaking numbers down and recombining them by using known facts. This child frequently visualizes the quantities and solves the problem with mental math.

Child's Solution to JRU (Above)
"I know that five and five is ten. I took one from the six to make five. But I must add the one back on. It's eleven."

Child's Solution to SRU (Above)
"I know that ten take away five is five, but I started with eleven. The answer must be one more. It's six."

SCU Problem

Grandmother had 8 strawberries. She gave some to Grandfather.

SRU Problem

Grandfather had 8 strawberries. He gave 3 to Grandmother.
How many strawberries does Grandfather have now?

\author{

Solution: Separates-From

 The child constructs (with manipilatives or drawings) a set of a set of eight
 objects. Three objects are removed. The answer is the number of remaining objects.}
When children begin to solve problems intuitively, they concretely represent the relationships in the problem. Over time, concrete strategies are abstracted to counting strategies, and eventually, as number facts are learned, children apply this knowledge to solve problems. This developmental approach differs from the practice of rote drill for memorization of facts. Children in drill/skill classrooms often are able to recite facts but lack understanding that a fact represents a relationship between quantities; they lack mathematical reasoning in relation to number sense. Children who have been allowed to progress through the stages of mathematical reasoning described in this manual develop both number sense and mathematical reasoning.

SYMBOLIC PROCEDURES

Much of what has been discussed to this point has focused on children's informal or intuitive problem-solving strategies. Such strategies are often very different from the standard symbolic procedures typically taught in the elementary school. Standard procedures provide powerful problem-solving tools; however, a concern is that many children merely memorize them. They never develop an understanding of the relationships among numbers within procedures. When allowed to progress through the stages described in the preceding section, a child will develop the habit of looking for numerical relationships. When introduced to the standard procedure, this child will understand the numerical relationships and will view the procedure simply as another strategy for solving problems.

Brooks, J. G., \& Brooks, M. G. (1993). In search of understanding: The case for constructivist classrooms. Alexandria:VA. Association for Supervision and Curriculum Development.
Carey, D. A., Fennema, E., Carpenter, T. P., \& Franke, M. L. (1993). Cognitively guided instruction: Towards equitable classrooms. In W. Secada, E. Fennema, \& L. Byrd (Eds.). New directions in equity for mathematics education. New York: Teacher College Press.
Carpenter, T. P., \& Fennema, E. (1992). Cognitively guided instruction: Building on the knowledge of students and teachers. In W. Secada (Ed.), Curriculum reform: The case of mathematics in the United States. Special issue of the International Journal of Educational Research (pp. 457-470). Elmswood, NY: Pergamon Press, Inc. Carpenter, T.P., Fennema, E. Franke, M.L., Levi, L., and Empson, S.B. (1999). Children's Mathematics: Cognitively Guided Instruction. Portsmouth, NH: Heineman.Collins, A.,
Brown, J. S., \& Newman, S. (1989). Cognitive apprenticeships: Teaching the craft of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser. Hillsdale, NJ: Erlbaum.
Fennema, E., Carpenter, T. P., Levi, L., Franke, M. L., \& Empson, S. (1997). Cognitively guided instruction: Professional development in primary mathematics. Wisconsin, Madison:Wisconsin Center for Education Research.
National Council of Teachers of Mathematics. (1998). Teaching standards for school mathematics. Reston, VA: Author.
National Council of Teachers of Mathematics. (2000). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.

Resource Information

To schedule a Cognitively Guided Instruction workshop, please contact:
Dr. Judith Hankes
University of Wisconsin Oshkosh
Curriculum and Instruction
Oshkosh, WI 54901
(920) 424-7254
hankes@uwosh.edu
A text describing CGI, Children's Mathematics: Cognitively Guided Instruction, is available through the Heinemann web site: http://www.heinemann.com
CGI web sites:
Blog: http://mindsongmath.blogspot.com/
http://www.mindsongmath.com/
http://www.abacon.com/ie/berk/wlp452a.htm

