Using Native American Legends To Teach Mathematics

Legends Retold by Students

Participating in the
Anishinabe Teachers for Anishinabe Children Project

Edited by
Judith Elaine Hankes, Ph.D. and Gerald P. Fast, Ph.D.

University of Wisconsin Osthoosh

Table of Contents

Ppolect descripion 4
ProIECT PABTICPANTS 5.
WISCOHSIS REEERVTIONS 6
LEGEMOS BY TITLE
Hon tir Bum Lost Hs Tall 8
Wib Rice.11
Hor nef fioner Cumid Be14
Bmonte Beal 7
 20
Hor me Brict Trié Gor tr's Bume 25
The Legeldor fprif Rocr 27
Hor tie Bexara Got Hs Tat30
The (ration Siont 34
How mit Turif FEHS Sounf for ite Wmies 37
Alaitinf Fanir of You 40
Taie of Paig 44
RBese Dinct 46
 49
Sjoux fantir 5
USIMG NATVE MMERICA NUMBER WORDS TO DEVELOP BASE TEN UMDESTAADOMG 54
Pation Lationge Puis for Powivarion 55
 56

Oimane Burber hons 58
 59
Mamane Howrear Woms 60
TEACHEA'S GUDE. 61

Anishinabe Teachers

 for
Anishinabe Children Project

Directed by Judith E. Hankes, Ph.D. and Gerald R. Fast, Ph.D.

University of Wisconsin Osthosh

June 19999

Twenty-one Anishinabe (Woodland Native American) high school students spent one week studying how young children learn mathematics. The students were selected to participate in this program because of their high academic aptitude and interest in teaching.

The goal of this unique mathematics experience was to prepare the students to tutor in elementary classrooms at their home reservations. Besides learning how to teach mathematics, the students also learned how to write a variety of word problems. They based their problems on Native American legends. The students also made linoleum prints to illustrate their legends. The students' legends, word problems, and illustrations make up this volume.

The mathematics content to which the students were introduced during this week-long program is based on principles of Cognitively Guided Instruction (Carpenter, et al., 1999). Cognitively Guided Instruction is described in the Teacher's Guide section of this volume.

Number translations of Menominee, Ojibwe, and Oneida languages are included in the section entitled Using Native American Number Words to Develop Base Ten Understanding.

Student Participants

Students from seven Wisconsin reservations participated in this project:
Bad River--- Aurora Conley and Valerie Connors
Ho Chunk---Angie Naquayouma and Amanda Peters
Lac du Flambeau---Heather Cardinal, Roland LaBarge, and Rebecca Maki
La Courte Orielles---Doreen Belille, Leonard Belille, Marian Belille, Nicole Miller, and Heather Gouge Menominee---Louise Bear, Talenna Marie Peters, Leona Tourtillott, Sara Wescott, and Terri Zhuckkahosee

Oneida---Desiree Barber, Priscilla Dessart, and Charlie Doxtator
Stockbridge Munsee---Maggie Putnam

The long range goal of the project is to attract Native American students into teacher education.

Wisconsin Revervation Map
 Tribe Populations 1990 Census

Native American Legends and

Related Math Problems

Note for teachers: When solving the following word problems, insert one set of the given numbers into the problem.Vary number sizes to increase difficulty.

Example:

Otter went fishing. He caught $\underline{5}$ fish. Then he caught 4 more fish.
How many fish did Otter catch?
$(5,4)(16,23)(46,46)$
The problems have been sequenced according to mathematical difficulty. Information explaining this sequence is provided in the Teachers' Guide (pages 61-70).

How the Bear Lot His Tail

an Ojibwe legend told to Marian, Doreen, and Leonard Belille
by Jerry Smith

Long, long ago there were only creatures on the earth. There were birds, bears, deer, mice, everything but people. In this long ago time, all the animals spoke the same language. And just like some people nowadays, they played tricks on one another and made each other laugh. They also helped each other. So it was with all the animals.

One day in the winter when the lakes had frozen, but before the winter sleep, Bear was walking along the lakeshore. As he was walking, he came upon Otter sitting near a hole on the ice with a pile of fish.
"You've got a mighty big pile of fish there," Bear said. "How did you get them fish?"
Instead of telling how he dove down into the water and caught the fish, Otter decided to trick Bear. You see, back then Bear had a very long bushy tail. He was very proud of his tail, and all the animals knew it.
"The way I catch my fish is by putting my tail in this ice hole," Otter explained. "I wiggle it around once in a while so the fish see it. When a fish bites onto my tail, I quickly pull it up and out of the water."
"That sure is an easy way to catch fish," Bear said. "Do you mind if I use your fishing hole?"
Otter, laughing behind the Bear's back, said, "I have enough fish. Use my fishing hole as long as you like." Then Otter picked up his fish and walked away. Bear carefully poked his tail into the ice hole and waited. He waited and waited. Once in a while he'd wiggle his tail so the fish could see it. Bear waited until the sun began to set, but not one fish even nibbled at his tail. At last, he decided to go home, but when he tried to stand up, his tail had frozen into the ice! He couldn't move! He pulled and pulled at his tail, but it was stuck tight. Finally, he pulled with all of his strength and ripped off half his tail!

Now you know why the Bear has a short tail, and remember . . . don't always believe what people tell you.

Doreen Belille

Marian Belille

Leonard Belille

How the Bear Lost His Tail Word Problems

Join: Result Unknown

Otter went fishing. He caught \qquad fish and then he caught ___ more. How many fish did Otter catch? $(5,4)(16,23)(46,46)$

Separate: Result Unknown
Otter caught \qquad fish.
He gave \qquad fish to a friend.
Now how many fish does Otter have?
$(7,4)(18,6)(33,27)$

Part Part Whole: Whole Unknown

There were \qquad bass and \qquad northern pike swimming near Otter's fishing hole. How many fish were swimming altogether? $(4,6)(22,15)(37,29)$

Compare: Difference Unknown
Otter has \qquad fish.
Bear has \qquad fish.
How many more fish does Otter have than Bear? $(10,7)(18,12)(42,34)$

Multiplication

Otter had ___ fishing holes.
He caught ___ fish from each hole.
How many fish did Otter catch?
$(3,4)(4,10)(7,20)$

Measurement Division

Bear gave \qquad of fish to some friends.
He gave \qquad to each friend.
How many friends got fish?
$(8,2)(25,5)(48,12)$

Partitive Division

Otter shared \qquad fish with his \qquad friends. Otter and each friend got the same number of fish. How many fish did each friend get?
$(8,2)(15,5)(48,6)$

Join: Change Unknown

In the morning Otter caught \qquad fish. By the end of the day, he had caught \qquad fish. How many fish did Otter catch in the afternoon? He did not fish in the evening.
$(6,10)(12,23)(66,85)$

Separate: Change Unknown

___ fish were swimming in a pond. Some swam away.
Then there were \qquad fish swimming. How many fish swam away?
$(9,4)(17,6)(35,27)$

Part Part Whole: Part Unknown

Otter caught \qquad fish. \qquad were northern pike. The rest were small mouth bass. How many small mouth bass did

Wild Bice

an Ojibwe legend retold by Heather Cardinal and Becky Maki

Waynaboozhoo was worried about what his people would eat during the long winter months. For several winters there had been very little food and the people had suffered. Waynaboozhoo wanted to put a stop to the suffering, so he went into the woods and fasted for four days in a wigwam. On the fourth day he started on a long walk, and as he walked, he thought about how to keep his people from starving. He continued walking until he came to the edge of a river. By that time, he was very tired, so he lay down to rest and fell asleep. Waynaboozhoo awoke late in the night when the moon was high in the sky. He walked along the edge of the river and saw what looked like dancers in the water. Waynaboozhoo thought he saw the feathers of the headdresses worn by Ojibwa men. He walked a little closer and asked if he could dance along. He danced and danced until he grew tired. He lay down and fell asleep again. The next morning when he awoke everything was calm. Waynaboozhoo remembered the dancers but thought it all had been a dream. Then he looked out at the tassels waving above the water. He waded out and found long seeds that hung from these tassels. He gathered some of these seeds in the palm of his hand and carried them with him back to his wigwam. There he continued fasting. Once again he grew tired and fell asleep, and as he slept, he had a vision. In the vision he learned that he had gathered wild rice and that it was to be eaten. He tasted the rice and found that it was good. Waynaboozhoo returned to the village and told his people about the rice. Together, they harvested enough to provide food for the long winter.

Wild Rice

Word Problems

Join: Result Unknown

The people harvested \qquad pounds of rice the first night and \qquad pounds the second night.
How many pounds of rice did they harvest altogether?
$(9,4)(18,6)(24,18)$

Separate: Result Unknown

Grandmother made \qquad pieces of frybread. She gave Waynaboozhoo \qquad pieces.
How much frybread did Grandmother have left? $(9,4)(18,6)(24,18)$

Part Part Whole: Whole Unknown

Grandfather has \qquad pieces of frybread and \qquad pieces of venison.
How many pieces of food does he have altogether? $(6,7)(22,34)(37,47)$

Compare: Difference Unknown

Rebecca Maki
Grandmother has \qquad beads sewn onto her medicine pouch. Grandfather has \qquad beads sewn onto his medicine pouch.
How many more beads does Grandmother have than Grandfather?
$(10,8)(28,12)(34,26)$

Multiplication

Grandmother has \qquad baskets.
There are __ rice cakes in each basket.
How many rice cakes are there altogether?
$(3,3)(5,12)(10,12)$

Measurement Division

A gatherer had \qquad baskets of wild rice.
He gave \qquad baskets to each of his friends. How many friends got wild rice?
$(6,2)(15,3)(36,12)$

Partitive Division

Grandmother made \qquad pieces of frybread.
She gave the frybread to \qquad friends.
If each friend got the same amount, how much frybread did each friend get?
$(6,2)(12,4)(55,11)$

Join: Change Unknown

_ pounds of wild rice were gathered in the morning.
More was gathered in the afternoon.
By late afternoon, \qquad pounds of wild
rice had been gathered.
How much wild rice was gathered in the afternoon?
$(7,13)(17,27)(24,36)$

Separate: Change Unknown

Grandmother made \qquad pieces of frybread.
She gave some to Waynaboozhoo.
Then she had \qquad pieces left.
How much frybread did she give to Waynaboozhoo? $(8,5)(20,9)(34,26)$

Part Part Whole: Part Unknown

At the feast there were __ people.
There were \qquad adults.
The rest were children.
How many children were at the feast?
$(12,8)(26,16)(45,28)$

Compare: Referent Unknown

Grandfather had \qquad pieces of frybread. 'He had __more pieces than Waynaboozhoo. How many pieces did Waynaboozhoo have?
$(12,7)(23,12)(43,14)$

Two-Step Problem

Each family gave \qquad pounds of wild rice for the feast. \qquad families gave rice. After the feast, \qquad pounds of rice were left over. How many pounds of rice were eaten at the feast?
$(3,4,6)(5,6,15)(6,7,26)$

How the Fower (ame to Be

a Menominee legend retold by
Sara Wescott

Long ago when the Creator was making life, He was feeling real happy. He truly enjoyed creating! He looked around at all the wonderful things He had made and thought to Himself, "I am so happy that I want to make something special to spread my happiness." He thought long and hard, and then said, "This thing must be so pleasing that it will get a second look. It must fill the air with sweet smells that create happiness." He thought some more, and then he added, "But I also want it to serve a purpose. It must be able to be eaten and used as medicine."

So, after thinking long and happily, the Creator took bits of this and bits of that and bits of things that had never been and created the flower. He made tall ones and short ones, skinny ones and fat ones. He made them every color imaginable. He was so satisfied with His new creation that He spread them all over the world for everyone to enjoy.

How the Flower Came to Be Word Problems

Join: Result Unknown

\qquad butterflies were fluttering in the garden.
more butterflies fluttered into the garden.
How many butterflies are in the garden now?
$(6,3)(24,13)(47,55)$

Separate: Result Unknown

A field had \qquad clover blossoms.
Rabbits ate \qquad of the blossoms.
How many clover blossoms were not eaten?
$(7,3)(29,7)(62,56)$

Part Part Whole: Whole Unknown

There are \qquad pink flowers and \qquad purple flowers.
How many flowers are there altogether?
$(5,4)(14,23)(37,44)$

Compare: Difference Unknown

One hill has \qquad flowers.
A field nearby has \qquad flowers.
How many more flowers does the field have than the hill?

$$
(6,9)(23,35)(72,96)
$$

Multiplication

There are \qquad flowers, and each flower has \qquad leaves.
How many leaves are there altogether?
$(3,4)(7,10)(12,8)$

Measurement Division

In a garden there are \qquad roses on each rose bush. Altogether there are \qquad roses. How many rose bushes are in the garden?

$$
(2,12)(5,25)(6,42)
$$

Partitive Division

In a garden there are \qquad rose bushes. There are the same number of roses on each bush. Altogether there are \qquad roses. How many roses are on each bush?
$(3,9)(4,24)(6,48)$

Compare: Difference Unknown

The Creator planted \qquad red flowers and __ yellow flowers. How many more red flowers than yellow flowers did the Creator plant?
$(9,4)(22,11)(56,28)$

Join: Change Unknown

There were \qquad clover blossoms in a meadow.
A rabbit ate some of them. Then there were \qquad clover
blossoms. How many blossoms did the rabbit eat? $(7,4)(26,14)(32,24)$

Separate: Change Unknown

__ butterflies were fluttering among the flowers. Some flew away. Then there were ___ butterflies left. How many butterflies flew away?

$$
(6,4)(17,5)(44,33)
$$

Part Part Whole: Part Unknown

There were \qquad flowers on a hill. of them were yellow.
The rest were red.
How many red flowers were on the hill?
$(9,3)(26,18)(56,48)$

Compare: Referent Unknown

There were \qquad roses in a field. There were \qquad more roses than daisies. How many daisies were in the field?
$(8,4)(28,14)(32,23)$

Two-Step Problem

__ butterflies fluttered into a flower filled garden. more butterflies fluttered into the garden.
Then a gentle breeze blew \qquad of the
butterflies into the woods.
How many butterflies stayed in the garden?
$(4,5,3)(11,23,14)(24,37,22)$

Brother Bear

a true Menominee story retold by
Louise Bear,
and Terri Zhuckkahosee

A long time ago on the Menominee Indian Reservation there lived a very old couple. The husband loved hunting and fishing. One winter night he decided to go on a hunting trip. So the next day his wife packed some warm clothes and lots of dried meat and berries for him and he set off on his trip.

He followed deer trails through the woods for a long time without seeing a deer. Then, at the edge of a meadow, he spotted one. Carefully, he aimed the arrow in his bow and let it fly. The arrow struck the deer but only wounded it. The deer leaped into a thicket of trees, and the old man quickly followed. He tracked the deer for many miles but eventually lost its trail. When he finally decided to return home, he realized that he was lost. The old man panicked and started to run, but he could not find a familiar trail. The old man remained lost for many days.

Late one afternoon, while trying to save time, he decided to walk across a lake. He had not gone far, when suddenly he broke through a weak spot in the ice! He carefully pulled himself from the water and crawled to shore. There, he took off his snowshoes and other heavy clothing and started walking. He became very cold and tired. Fortunately, he noticed a small cave and went inside. A bear was hibernating in the cave, but that didn't bother him. The old man cuddled close to the bear to keep warm, and while lying next to the bear, he ate the dried meat and berries his wife had sent with him. He stayed with the bear until his clothing dried and he regained his strength.

When he finally returned home, his wife asked, "Where have you been?"
The old man answered, "I was staying with my brother bear."

Teri Zhuckkatosece

Louise Bear

Multiplication

There were ___ oak trees. In each oak tree there were \qquad blue jays. How many blue jays were there altogether?

$$
(3,4)(4,6)(5,8)
$$

Measurement Division

The old man gave __ berries to some animals.
He gave \qquad berries to each animal.
How many animals got berries?
$(9,3)(18,6)(36,4)$

Partitive Division

The old man fed berries to \qquad birds. Each bird got the same number of berries. Altogether, the old man gave the birds \qquad berries. How many berries did each bird get?
$(2,8)(4,16)(4,32)$

Join: Change Unknown

The old man stayed with the bear for two days.
On the first day he ate __ pieces of venison.
On the second day he ate some more pieces of venison.
Altogether he ate \qquad pieces of venison.
How much venison did the old man eat on the second day?
$(4,10)(14,26)(18,32)$

Separate: Change Unknown

The old lady packed \qquad pieces of venison for the old man. When he returned home, he still had \qquad pieces of venison. How many pieces did he eat on his hunting trip?

Part Part Whole: Part Unknown

The old man saw \qquad birds. \qquad of the birds were blue jays. The rest were crows.
How many crows did the old man see?
$(7,2)(22,18)(31,24)$

Compare: Referent Unknown

The old man ate \qquad berries. He ate \qquad more berries than pieces of venison. How many pieces of venison did he eat?
$(13,9)(26,25)(54,37)$

Two-Step Problem

To celebrate the old man's safe return, the old lady held a feast. \qquad friends came to the feast. Each friend ate___pieces of frybread.
There were__ pieces of frybread leftover.
How many pieces of frybread had the old woman fried?
$(3,5,5)(6,4,25)(11,6,29)$

Waynabooctoo and the e reat llood

an Ojibwe legend
retold by Valerie Connors

Long ago the world was filled with evil. Men and women lost respect for each other. The Creator was unhappy about this and decided to cause a great flood to purify the earth.

A man named Waynaboozhoo survived. He turned some floating sticks and a log into a raft for the animals and himself. They floated around for a full moon waiting for the water to go down. It didn't, so Waynaboozhoo decided to do something about it.
"Maang!" he called to the loon. "You are an excellent swimmer. See if you can dive down to the old world and bring back a lump of mud in your bill. With mud, I will create a new world."

Maang dove into the water and was gone a long time. When he finally did return, he said, "I could not reach the old world. It was too far down."
"Amik!" called Waynaboozhoo to the beaver. "You are an excellent swimmer. Will you try next?"
Amik dove off and was gone even longer than Maang, but he too returned empty-handed.
"Is there anyone else who'll try?" asked Waynaboozhoo.
Just then a small coot, Aajigade, came swimming along and asked, "What's going on?"
"Get away Aajigade," called one of the birds. "We do not have time for your nonsense."
Now the animals began arguing loudly. Everyone had a different plan about how to get the mud, but no one could agree on whose plan they would use. For hours and hours they argued. By and by, someone noticed that the sun was beginning to go down. They would have to put off the planning until the next day. Everyone began to find their sleeping spot on the raft to rest for the night. Maang asked, "Whatever happened to that silly little Aajigade?"

Suddenly, there was shouting on the other end of the raft. Someone had noticed a small body floating in the water. Water birds paddled hurriedly to investigate and found that it was Aajigade. They brought his body to the raft.

Wayndobochoo and the Crreat Food (continued)

Waynaboozhoo lifted him up, and looking in his small beak, he found a particle of mud. Little Aajigade had reached the old world and got the mud! He had given his life to do this. The other animals were ashamed of themselves for having made fun of little Aajigade. They hung their heads. They felt very sad.

Waynaboozhoo took Aajigade's little body and softly blew life back into him. Waynaboozhoo held him closely to warm him and announced that from that day forward, Aajigade would always retain a place of honor among the animals. Waynaboozhoo set Aajigade down on the water and he swam off as though nothing had happened.

Then Waynaboozhoo took Aajigade's mud in his hands and began to shape it. Next he commanded it to grow. As it grew, he needed a place to put it. Mikinaak (the snapping turtle) came forward and said, "I have a broad back. Place it here."

Waynaboozhoo put it on Mikinaak's back so that it could grow larger.
"Miigwetch, Mikinaak," said Waynaboozhoo. "From this day on, you shall have the ability to live in all the worlds, under the mud, in the water, and on land."

The mud began to take the shape of land. Waynaboozhoo placed some tiny enigoonsags (ants) on it. This made it start to spin and grow more. It grew and grew, and more animals stepped onto it until finally it was large enough for moose to walk about. Now Waynaboozhoo sent benishiyag (the birds) to fly around to survey how large the land was. He said to them, "Return to me now and again to let me know how the land is doing. Send back your messages with songs. To this day, that is what the birds continue to do. That is also why they are called the singers.

At last, Waynaboozhoo stepped onto the new world. It had become a home, a place for all the animals, insects and birds, a place for all living things to live in harmony.

Valerie Connors

Waynaboozhoo and the Great Flood Word Problems

Join: Result Unknown

Waynaboozhoo made a raft from sticks that were floating in the water. He picked \qquad sticks from the water. Then he picked out \qquad more sticks. How many sticks did Waynaboozhoo pick out of the water?
$(3,6)(25,12)(36,36)$
Separate: Result Unknown
\qquad animals were floating on the raft.
_ jumped into the water. How many stayed on the raft?
$(7,4)(17,6)(35,18)$
Part Part Whole: Whole Unknown There were \qquad maple leaves floating in the water and \qquad willow leaves.
How many leaves were in the water?
$(5,4)(16,14)(27,27)$

Compare: Difference Unknown

Swimming near the raft were \qquad bass and \qquad walleye. How many more walleye then bass were swimming near the raft?
$(6,12)(12,24)(25,33)$

Multiplication

There were \qquad sticks floating in the water.
Each stick had \qquad enigoonsags (ants) on it.
How many enigoonsags were there altogether?

$$
(3,4)(4,7)(5,13)
$$

Measurement Division

Waynaboozhoo gave \qquad berries to some friends.
He gave \qquad berries to each friend.
How many friends got berries?
$(8,2)(15,5)(32,8)$

Partitive Division

Waynaboozhoo gave \qquad fish to \qquad friends.
Each friend got the same number of fish.
How many fish did each friend get?

$$
(9,3)(24,6)(48,6)
$$

Join: Change Unknown

__ frogs were swimming near the raft.
Some more frogs jumped into the water to join them.
Then there were __ frogs swimming.
How many frogs jumped into the water?
$(3,9)(16,28)(47,64)$

Separate: Change Unknown

_ birds were sitting on a log. Some flew away. Then there were \qquad birds on the log. How many birds flew away?

$$
(8,3)(18,7)(32,26)
$$

Part Part Whole: Part Unknown

\qquad turtles were swimming. \qquad were snapping turtles and the rest were sea turtles. How many were sea turtles?
$(10,4)(26,14)(72,38)$

Two-Step Problem

Maang (the loon) dove \qquad times to find the old world.
Amik (the beaver) dove \qquad more times than Maang.
Aajigade dove twice as many times as Amik. How many times did Aajidad dive?
$(12,9)(24,14)(33,28)$

Encourage students to write and solve their own word problems and to share their problems with classmates.

How the Birh Tree Got th's Burrs

an Ojibwe legend retold
by Aurora Conley
The Ojibwe people always had stories to tell that had a moral. A main character who was always used was Waynaboozhoo. But it is told that you cannot tell a Waynaboozhoo story in the spring, summer, or fall, only when there is snow on the ground or it is said that a frog will be in your bed. You can put down cedar and ask to tell the story and nothing will happen to you or your bed. This is what I am told. Now this is the story about how the birch bark got its burns. Often stories have different morals or different explanations so this one may be somewhat different from others that you have heard.

It was wintertime and Waynaboozhoo's grandmother called him to her. "Waynaboozhoo, omaa bi izhaan!" she called. "Come here. It is cold and we have no fire for warmth or to cook and prepare our food. I ask of you to go to find the fire, ishkodence, that Thunderbird has in the west."
"Grandmother," Waynaboozhoo replied. "I will go and look for the great ishkodence for you." He disguised himself as a waboos, a little rabbit, and headed off to the west looking for the fire.

When Waynaboozhoo finally reached Thunderbird's home, he asked, "Please share the warmth inside your home. I am cold and lost. I will only stay a little while, for I must be on my way."

The Thunderbird agreed and allowed Waynaboozhoo to enter his home. Inside, Waynaboozhoo saw the fire and waited until Thunderbird looked away. Then, Waynaboozhoo quickly rolled in the fire and took off running toward his home with the fire on his back!

Thunderbird flew behind Waynaboozhoo throwing lightning flashes at him! Waynaboozhoo grew tired and yelled for someone to help him. "Widoka! Widoka washin! Help me!" he cried.

Then omaaî mitig, the birch tree, spoke. "Come, hide beside me my brother. I will protect you." The little waboos hid beneath the tree while Thunderbird flashed and thundered, angry that Waynaboozhoo had stolen the fire. The lightning bolts missed Waynaboozhoo every time but they hit omaâ mitig. Dark burn marks scarred the white bark of the tree. That is why the birch tree now has burn marks on its bark.

How the Birch Tree Got te's Burns Word Problems

AURORA CONLEY

Join: Result Unknown

When Waynaboozhoo returned home with the fire, his grandmother made __ pieces of frybread.
Then she made \qquad more pieces.
How much frybread did Grandmother make?
$(5,4)(13,15)(24,37)$
Separate: Result Unknown
Grandmother made \qquad pieces of frybread and Waynaboozhoo ate \qquad pieces.
How many pieces of frybread were left? $(10,6)(19,7)(35,16)$

Part Part Whole: Whole Unknown
There are \qquad birch trees and \qquad maple trees.
How many trees are there altogether? $(4,5)(23,24)(32,29)$

Compare: Difference Unknown
There are \qquad maple trees and \qquad birch trees. How many more maple trees than birch trees are there?
$(9,6)(17,12)(33,26)$

Multiplication

Grandmother put frybread into \qquad baskets.
She put \qquad pieces in each basket.
How many pieces of frybread did Grandmother put in the baskets altogether?

$$
(3,5)(4,6)(12,7)
$$

Measurement Division

Waynaboozhoo gave berries to \qquad little
waboos (rabbits). Each rabbit got the same number of berries. Altogether he gave ___ berries to the rabbits. How many berries did each rabbit get?

$$
(4,8)(6,18)(4,36)
$$

Partitive Division

Grandmother put frybread into \qquad baskets.
She put the same number of pieces in each basket. How many pieces of frybread did she putin each basket?

```
(9,3) (25,5) (96, 12)
```


Join: Change Unknown

In the morning Waynaboozhoo gathered \qquad twigs for Grandmother's cooking fire. In the afternoon he gathered more twigs. By late afternoon he had gathered \qquad twigs. How many twigs did Waynaboozho gather in the afternoon? $(6,13)(14,28)(34,62)$

Separate: Change Unknown

Thunderbird had \qquad pieces of wood.
He burned some in his fire.
Then he had \qquad pieces of wood left.
How many pieces of wood did Thunderbird burn in his fire?
$(7,4)(17,5)(22,14)$

Part Part Whole: Part Unknown

There were \qquad birds sitting in a birch tree. \qquad were chickadees and the rest were pine finches. How many pine finches were in the birch tree?
$(12,7)(29,17)(22,18)$

Compare: Referent Unknown

Waynaboozhoo and Grandmother gathered twigs for the fire. Waynaboozhoo gathered \qquad twigs. He gathered \qquad more than Grandmother. How many twigs did Grandmother gather?

$(12,7)(24,12)(36,19)$

Two-Step Problem

A young birch tree had \qquad branches. By autumn it had \qquad more branches. Each branch had \qquad twigs sprouting. How many twigs were on the birch tree?
$(4,4,3)(5,5,10)(12,14,20)$

The Legernd offsirit Rock

a Menominee legend retold by Leona M. Tourtillott and Talenna M. Peters

Long ago an elder told three warriors that if they walked a great distance to a sacred place along the Wolf River and offered tobacco, the Great Spirit would grant them their most wanted wish. So the three set out on their journey. They walked for many days and overcame many obstacles before reaching the sacred place.

The first warrior offered his tobacco and thought about his wish for a while. Finally, he said, "Oh Great Spirit, could you please give me the skills to hunt better, for I have a big family and am not able to feed them?" The Great Spirit gladly granted his wish and sent him on his journey back home.

The second warrior also offered his tobacco and then thought about his wish. A moment later he said, "Oh Great Spirit, could you please help me find a wife, for I have everything and no one to give it to?" The Great Spirit granted his wish and sent him on his way home.

The third warrior then stepped forward and offered his tobacco. He stood at the sacred spot looking at the ground. When he looked up, he said, "Oh Great Spirit, would you grant me eternal life, for I want to live forever?" Such selfish pride angered the Great Spirit. In return, the Great Spirit granted his wish by turning him into an everlasting rock, Spirit Rock.

To this day Spirit Rock still exists. It is said that if the rock ever crumbles away, the Menominee people will have lost their culture. Some also say that if the rock crumbles, there will no longer be any full-blooded Menominee. Gifts of tobacco are offered on the rock because it is a symbol to be cherished forever by the Menominee people.

Leona Toutillot

Talenna Marie Peters

The Legend of Spirit Rock Word Problems

Join: Result Unknown
In the morning, the warriors
sang \qquad sacred songs.
In the afternoon they sang \qquad more songs.
How many songs did they sing altogether?
$(4,5)(14,12)(23,17)$

Separate: Result Unknown

The second warrior had \qquad deer horn dice. He gave \qquad of them to the other warriors.
How many dice does he have left?
$(7,4)(18,6)(26,18)$
Part Part Whole: Whole Unknown
The warriors picked \qquad blueberries and \qquad strawberries.
How many berries did they pick?
$(3,5)(22,14)(48,39)$
Compare: Difference Unknown
The third warrior picked \qquad chokecherries.
The second warrior picked \qquad chokecherries. How many more chokecherries did the second warrior pick than the third warrior? $(3,8)(15,27)(25,39)$

Multiplication

- At a feast there were \qquad baskets of frybread.
In each basket, there were \qquad pieces of frybread. How many pieces of frybread were there altogether? $(3,4)(5,7)(8,12)$

Measurement Division

The warriors gave \qquad berries to some children.
Each child got \qquad berries.
How many children were given berries?
$(8,4)(24,4)(48,12)$

Partitive Division

The warriors saw \qquad crows sitting in \qquad trees. Each tree had the same number of crows.
How many crows were in each tree?
$(6,2)(16,4)(39,3)$

Join: Change Unknown

The first and second warriors gave an old man some dried venison. The first warrior gave \qquad pieces. After the second warrior gave his venison, the old man had \qquad pieces. How many pieces of venison did the second warrior give to the old man?
$(4,9)(15,28)(24,43)$

Separate: Change Unknown

__ blue jays were sitting in an oak tree.
Some flew away.
Then there were \qquad blue jays in the tree.
How many blue jays flew away?
$(9,5)(17,12)(25,16)$

Part Part Whole: Part Unknown

The three warriors saw \qquad birds. \qquad of the birds were crows. The rest were blue jays. How many blue jays did the warriors see? $(10,4)(24,11)(37,18)$

Compare: Referent Unknown

In June \qquad families visited spirit rock. \qquad more families visited in June than in May. How many families visited in May?
$(12,7)(26,15)(42,25)$

Two-Step Problem

In June \qquad Menominee families visited Spirit Rock. In July \qquad families visited. In August, the same number of families visited as in both June and July. Altogether, how many families visited Spirit Rock in June, July, and August?
$(6,7)(18,22)(37,37)$

How the Beaver Got tis Tiil

an Ojibwe legend retold by
Roland LaBarge

Once upon a time there was a beaver who loved to brag about his tail. One day while taking a walk, the beaver stopped to talk to a bird. The beaver said to the bird, "Don't you love my fluffy tail?"
"Why, yes I do little beaver," replied the bird.
"Don't you wish your feathers were as fluffy as my tail? Don't you wish your feathers were as strong as my tail? Don't you wish your feathers were just as beautiful as my tail?" the beaver asked.
"Why do you think so much of your tail, little beaver?" asked the bird. This insulted the beaver and he walked away.

After walking for a while, he stopped for a drink by the river and saw a muskrat. He walked to the muskrat and said, "Hello little muskrat. What do you think about my tail?"
"Well, it is very beautiful and big and fluffy," answered the muskrat. "Is it also a strong tail?"
"Why, yes it is," the beaver answered. "Do you wish you had a tail like mine?"
"I didn't say I wanted a tail like yours. I just asked if it was strong," the muskrat replied with a disgusted voice.
The beaver quickly turned and began walking back to his dam. He was angry because he felt that the animals were being rude to him. He was very upset and decided to take out his frustration by cutting down trees. After cutting down a couple of trees, he came to a very large one. He knew that it would be a great challenge for him. So he went to it. But as he was cutting, he kept thinking about his tail and didn't notice that he was cutting at a bad angle. Before he knew what was happening, the tree began to fall toward him. He jumped to get out of the way, but he didn't jump fast enough, and the huge tree fell on his beautiful tail! He tugged and pulled and finally dug away the earth to free himself. When he finally pulled his tail from under the tree, he was horrified to see that it was flat. The beaver was very sad and started to cry. As he was crying he heard a voice. It was the Creator.
"Why are you crying?" asked the Creator
"A tree has crushed my beautiful tail," the beaver cried. "Now no one will like me."

How the Beaver (ot tis bail (continued)

The Creator told him that a beaver is not liked for his tail but for his kindness and wisdom. He also told him how to use his flat tail. "Now your tail will help you swim rapidly," the Creator said. "And when you want to signal a message to a friend, all you have to do is slap your tail on the water."

Hearing this made the beaver happy again. When the animals saw his flattened tail they were shocked! But the beaver said, "It's better this way."

From that day on, the beaver never bragged about his tail, and all the animals liked him.
That's how the beaver got his flat tail.

Roland La Barge, If:

Join: Result Unknown

The beaver ate \qquad leaves. Then he ate \qquad more leaves. Altogether, how many leaves did the beaver eat?
$(5,4)(12,14)(25,29)$

How the Beaver Goot His Tail Word Problems

Separate: Result Unknown

There were \qquad animals listening to the beaver brag about his tail. \qquad got tired of his bragging and walked away. How many stayed and listened to the bragging? $(8,6)(19,15)(46,39)$

Part Part Whole: Whole Unknown
The beaver bragged to \qquad gold finches and \qquad chickadees. How many birds heard the beaver brag? $(6,3)(14,14)(27,33)$

Compare: Difference Unknown

On the hill near the beaver's pond there are \qquad poplar trees and \qquad maple trees.
How many more maple trees than poplar trees are near the pond?
$(4,7)(25,34)(48,57)$

Multiplication

The beaver bragged to \qquad animals.
He bragged \qquad times to each animal.
How many times did he brag altogether?
$(3,3)(11,5)(12,7)$

Measurement Division

After his tail was flattened, the beaver apologized \qquad times to each of his friends. Altogether, he apologized __ times. How many friends heard the beaver's apologies?
$(2,8)(6,18)(4,32)$

Partitive Division

The beaver tucked \qquad chips of wood into holes in his dam. He tucked the same number of wood chips in each hole. There were \qquad holes in the dam. How many wood chips did the beaver tuck in each hole? $(12,2)(24,6)(30,6)$

Join: Change Unknown

The beaver sent a message by slapping his tail on the water. First he slapped it \qquad times softly. Then he slapped it loudly.
Altogether, he slapped his tail \qquad times.
How many times did he slap his tail loudly? $(5,11)(22,35)(43,61)$

Separate: Change Unknown

The beaver had \qquad berries to give to his friends. While walking to the forest, he ate some of them.
When he got to the forest, he had \qquad berries left.
How many berries did the beaver eat?
$(9,4)(28,6)(33,16)$

Part Part Whole: Part Unknown

In the forest the beaver met \qquad little furry creatures.
\qquad were field mice, and the rest were rabbits.
How many rabbits did the beaver meet?
$(6,4)(32,23)(34,26)$

Compare: Referent Unknown

The muskrat caught \qquad fish. He caught \qquad more fish than the beaver. How many fish did the beaver catch? $(8,3)(18,7)(32,15)$

Two Step Problem

The beaver softly slapped his tail against the water \qquad times. Then he slapped it \qquad times loudly. He repeated this tail slapping pattern \qquad times. Altogether, how many times did the beaver slap his tail? $(2,4,2)(4,5,3)(5,6,10)$

Encourage students to write and solve their own word problems and to share their problems with classmates.

The creation Story

an Ojibwe legend retold by
Heather Gouge and Nicole Miller
Long ago before Mother Earth existed, the Creator sat alone in darkness thinking, and with His thoughts He formed Mother Earth. He covered the Earth with plants and trees, birds and animals, and many crawling insects, but He became lonely. So, from the soil of the Earth he formed two companions, a man and a woman. Beside the man he placed a bow and arrow. This was to show that the man was to be the protector and provider of food. Beside the woman he placed a birch bark basket filled with seeds. The basket and seeds represented the natural resources given to the Ojibwe people. The Creator also placed a book next to the woman. Then the Creator blew life into the woman and the man. First he blew life into the woman, and when she arose, she picked up the birch bark basket full of seeds, but she did not pick up the book. Her choice doesn't mean that Ojibwe people are not educated, they just have a different way of learning. When the Creator blew life into the man, the man picked up the bow and arrow and accepted his responsibility to protect and provide food. Then the Creator said, "Take care of Mother earth, and she will take care of you. Don't get greedy. Take only what you need, and remember to put down tobacco before you take from Mother Earth."

This is how the Ojibwe people came to be.

Nicole Miller

The Creation Story Word Problems

Join: Result Unknown

butterflies fluttered into a meadow.
Then \qquad more butterflies fluttered into the meadow. How many butterflies fluttered into the meadow? $(5,4)(13,14)(32,27)$

Separate: Result Unknown

There were __ birds on a tree. \qquad of the birds flew away. How many birds stayed on the tree? $(9,3)(27,8)(32,27)$

Part Part Whole: Whole Unknown
There were \qquad mud turtles and \qquad paint turtles sitting on the log?
How many turtles were sitting on the log? $(8,4)(14,13)(29,31)$

Compare: Difference Unknown
The man had \qquad arrows with red feathers and \qquad arrows with yellow feathers.
How many more arrows had red feathers
than yellow feathers?
$(8,4)(19,14)(31,22)$

Multiplication

The woman had \qquad birch bark baskets.
In each basket she stored \qquad pieces of dried meat.
How many pieces of dried meat did she store?
$(4,5)(11,10)(5,25)$

Measurement Division

The woman gave __ berries to her children. Each child got. \qquad berries.
How many children does the woman have? $(10,2)(18,3)(32,8)$

Partitive Division

The man prepared \qquad pieces of dried
venison to give to his \qquad relatives.
Each relative got the same amount.
How many pieces of venison did each relative get?
$(9,3)(15,3)(28,7)$

Join: Change Unknown

The woman made \qquad pieces of frybread for a family feast. After the feast, there were \qquad uneaten pieces of frybread. How many pieces of frybread were eaten during the feast? $(10,21)(26,52)(49,77)$

Separate: Change Unknown

The woman sewed \qquad beads onto her husband's moccasin.
In the night, a pack rat chewed off some of the beads so that there were only __ beads left on the moccasin.
How many beads did the pack rat carry
away to its nest?
$(10,6)(26,14)(32,19)$

Part Part Whole: Part Unknown

The man sang \qquad songs to his wife. \qquad of the songs were serious. The rest were silly. How many silly songs did he sing? $(12,8)(24,6)(35,26)$

Compare: Quantity Unknown

Red and yellow beads are in a basket. There are \qquad red beads. There are \qquad more yellow beads than red beads. How many yellow beads are in the basket? $(3,8)(12,22)(24,28)$

Two-Step Problem

The woman gave \qquad pieces of frybread to each of her
\qquad children and \qquad pieces of frybread to her mother.
How many pieces of frybread did the woman give away?
$(2,2,4)(3,5,6)(4,7,10)$

How the Turtele Few South for the Winter

an Oneida legend
retold by Priscilla Dessart

One day while Turtle was walking, he noticed some birds flying overhead. He yelled to them, "Where are you going?"

Two birds flew down and answered, "We're flying south for the winter."
"What is in the south?" Turtle asked.
"Don't you know anything?" the birds said. "In the south there is a lot of food and it is nice and warm."
"That sounds wonderful," Turtle said. "May I go with you?"
"No way. You can't fly," replied the birds.
Turtle kept pestering them until they finally agreed.
"But, if you come with us," they told Turtle, "you must hang on to a stick and not let go until we get there."
"That won't be a problem," Turtle said. "Once I bite something, I won't let go until I want to."
So the two birds grasped each end of a stick with their feet. Turtle bit tightly onto the middle of the stick and hung on.

At first Turtle enjoyed his ride, but then he began to feel anxious. He wanted to know how far they had traveled, so he tried to get the birds attention by mumbling, but the birds pretended not to hear Turtle. Soon they were really high and Turtle was getting worried. He worried about whether the birds knew where they were going and when they would get there. He wiggled his legs to get the birds' attention, but they ignored him.

Unfortunately, Turtle's curiosity got the best of him, and he opened his mouth to ask, "Are we there yet?" But the birds didn't hear his question for he was falling quickly to the earth. As he fell, he tucked himself into his shell. When Turtle hit the ground, he got up unhurt and buried himself in the mud.

That is why Turtle goes underground during the cold winter months.

Priscilla Dessart

How the Turtel Fews South for the Wiiter WordProblems

Join: Result Unknown

To get the birds' attention, Turtle wiggled his tail
\qquad times. Then he wiggled it \qquad more times. How many times did Turtle wiggle his tail? $(4,5)(12,22)(36,47)$

Separate: Result Unknown

There were \qquad bugs on a log.
Turtle ate \qquad of them.
How many bugs didn't he eat?
$(8,5)(24,12)(53,27)$
Part Part Whole: Whole Unknown
Turtle has \qquad long sticks and \qquad short sticks. How many sticks does Turtle have altogether? $(3,7)(14,25)(39,48)$

Compare: Differences Unknown

Turtle has \qquad berries.
The bird has \qquad berries.
How many more berries does the bird have than Turtle?
$(4,9)(23,35)(49,67)$

Multiplication

Turtle saw \qquad flocks of birds.
There were \qquad birds in each flock.
How many birds did Turtle see altogether?
$(3,4)(7,5)(4,12)$

Measurement Division

Turtle gave \qquad fish to some friends.
Each friend got \qquad fish.
How many friends got fish?
$(9,3)(24,6)(66,11)$

Partitive Division

Turtle gaveberries to \qquad of his friends.
Each friend got the same number of berries.
Altogether, he gave away \qquad berries. How many berries did each friend get?
$(3,6)(3,18)(3,33)$

Join: Change Unknown

Turtle counted \qquad autumn leaves floating on the water.
Some more leaves settled onto the water.
Then there were \qquad floating leaves.
How many new leaves fell onto the water?
$(5,9)(14,26)(53,72)$

Separate: Change Unknown

There were \qquad turtles on a log.
Some slipped into the water and swam away.
Then there were \qquad turtles on the log.
How many turtles swam away?
$(7,3)(19,14)(25,16)$

Part Part Whole: Part Unknown

Turtle saw \qquad birds. \qquad of them were blue and the rest were yellow.
How many yellow birds did Turtle see?
$(8,3)(17,6)(32,18)$

Compare: Quantity Unknown

Maple and birch leaves were floating on the water. There were \qquad maple leaves. There were \qquad fewer birch leaves than maple. How many birch leaves were floating on the water?
$(11,6)(25,13)(52,28)$

Two Step Problem

__bullfrogs, __ le leopard frogs, \qquad snapping turtles, __ paint turtles, and __ leather back turtles burrowed into the river mud to sleep during the long winter. How many more frogs than turtles burrowed into the river mud?
$(4,6,3,2,3)(15,16,11,8,10)(26,38,24,14,22)$

Rightin froort offou

an original story by
Amanda Peters, HoChunk

One night a stranger walked into a village. The stranger needed a place to stay for the night, but the villagers did not invite him into their homes. Finally, at the edge of the village, he came to the house of an old man and an old woman. They welcomed the stranger because they didn't get many visitors. The man was also young and reminded them of their grandson who lived far away.

The young man said that he was only going to stay for a few days, but a few days turn into a few weeks and then into a few months. The stranger and the old couple became good friends. Many nights were spent telling stories. The young man listened respectfully to the stories of the old couple.

One day the old couple went berry picking and when they returned home, the young man was gone. The old couple asked the villagers if they had seen their friend. One villager said she saw him leave in the same direction from where he first came.

The old couple was very sad. They went into the room where the young man slept and searched for a clue to let them know where he had gone. While searching, they found a box, and inside the box was the most beautiful stone they had ever seen. They couldn't keep their eyes off it! There was also a note in the box. In the note, the young man explained that the stone would give them the power to get whatever possession they wanted. The old couple began to cry and hug each other because they had always been poor.

That very day they wished for a new house and got one. All they had to do was think of what they wanted and it appeared, but they noticed that there was a problem. Always after making a wish and having the object appear, the old man would get a terrible stomach ache. It didn't take long for the village people to notice all of the old couple's new stuff.
"Where did you get these things?" they asked. But the old couple did not answer truthfully, and every time they lied, the old man's stomach would start aching. After awhile he started to get headaches along with the stomach aches. So the couple decided to tell the truth. That's when everything went out of control.

When they told the villagers the truth, everyone forced the old couple to make their wishes come true.

Right in Front of fou (ontinued)

Soon the old man became so ill that he had to stay in bed. Fearing for the health of her husband, the old lady hid the stone and told the villagers that it was lost. Of course, everyone thought she was lying.
"We cannot believe her. She lied before. She's lying now!" the villagers shouted. They rushed to the old couple's home, forced open their door, and demanded to be given the stone. But the old couple said nothing. So the villagers beat them. Since the old man was already very sick, he nearly died when they beat him.

When the people finally left, the old woman took the stone from its hiding spot. She knew that if they didn't get away from the selfish villagers her husband would die. She thought that if he was going to die he might as well die trying to get away. So, that evening, the old woman made a wish for a horse with a travois, and it appeared. Next the old woman carefully helped her husband to the travois. There she made a bed and covered him with a blanket. Then she got on the horse and guided it quietly down the road.

They traveled through the night, and just as the sun was setting, they came to a pond. The old woman stopped by the pond to give her husband a drink. She was very tired and wanted so badly to rest.
"I must get rid of this stone," she thought. Suddenly she had an idea. She helped her husband stand up, gave him the stone and said, "Throw it in."
"Yes," the old man agreed, and he feebly tossed the stone into the still surface of the water. Ripples spread throughout the whole pond.

The force of the toss'caused the old man to lose his balance, and he fell partly into the water. There he lay, too weak to move. As he lay in the cold pond, ripples from the tossed pebble slowly made their way to him, and with the touch of the first ripple, the old man started to regain his strength. Gradually, he became as strong as he had been before.

The old man could see that his wife was tired. So, he went into the woods and made a bed of grass and cedar boughs for her. When he was finished, he gently picked her up and carried her to the soft bed. After gently placing her on the bed, he sat next to her and thought about how much he loved his wife and how much she loved him. Though they had never had many possessions, they had always had the most important thing. They had each other.

Amanda Peters

Rigititin froint offou WordProblems

Join: Result Unknown

The old lady made \qquad pieces of fry bread for her husband.
Then she made \qquad more pieces of fry bread.
How much fry bread did she make altogether?
$(5,4)(13,24)(45,46)$

Separate: Result Unknown

The young man took __ apples on his journey. He ate \qquad of them.
How many apples did he have left?
$(9,3)(18,7)(35,27)$
Part Part Whole: Whole Unknown
The young man had \qquad evil stones and \qquad good stones.
How many stones did he have altogether?
$(4,6)(15,14)(46,46)$

Compare: Difference Unknown

The old lady had \qquad new things and the old man had \qquad new things.
How many more new things did the old lady have than the old man?
$(10,6)(28,12)(32,23)$

Multiplication

The old lady had \qquad baskets. She put \qquad apples in each basket. Altogether, how many apples did she put into the baskets?

$$
(3,4)(5,10)(6,12)
$$

Measurement Division

The old lady granted \qquad wishes for the people.
Each person got \qquad wishes.
How many people got their wishes granted?
$(6,2)(15,3)(24,6)$

Partitive Division

The old man had \qquad arrows.
He put them in \qquad bundles.
How many arrows did he put in each bundle?
$(9,3)(18,3)(33,11)$

Join: Change Unknown

The old man had \qquad arrows. The young man gave him some more arrows. Then the old man had \qquad arrows. How many arrows did the young man give to the old man?
$(5,11)(12,26)(28,53)$

Separate: Change Unknown

The young man had \qquad magic stones in his pouch. As he walked, some fell out through a small hole in the pouch. Then he only had \qquad magic stones.
How many stones fell from his pouch?

$$
(9,3)(17,9)(27,18)
$$

Part Part Whole: Part Unknown

The old lady made __ wishes, __ were for herself and the rest were for other people.
How many wishes did she make for other people?
$(7,3)(27,8)(34,16)$

Two-Step Problem

The old lady sewed \qquad _porcupine quills and \qquad beads onto the old man's new moccasins.
Then she sewed on \qquad more quills. How many more quills than beads did she sew onto the moccasins? $(4,12,10)(12,26,20)(35,68,35)$

Encourage students to write and solve their own word problems and to share their problems with classmates.

Tree of Peace

an Oneida story retold by Charlie Doxtater

The story of the Tree of Peace is true and happened in the early 1800's. The Tree of Peace helped unite one of the most powerful leagues ever, The Iroquois League of Nations. The Iroquois League was made up of six tribes: the Cayuga, the Mohawk, the Oneida, the Onondaga, the Seneca, and the Tuscarora.

The tribes of the Iroquois League at one time were fighting with one another. There were fierce battles, but the people grew tired of the fighting. So they agreed to bury their weapons under a giant white pine tree. They believed that the weapons would be carried away by the under ground waters. So they sent the weapons off through the path of the roots. The weapons went in all four directions. After that, the tribes no longer fought. Instead, they formed the Iroquois League.

Today the Iroquois people have peace with one another and together the tribes form a powerful nation.

Tree of Peace

Word Problems

Join: Result Unknown

One little boy picked up __ pine cones. A little girl gave him \qquad more pine cones. How many pine cones does the little boy have?

```
(3,4) (12, 17) (14, 27)
```


Separate: Result Unknown

There were __ pine cones on a white pine.
__ of the pine cones fell to the ground.
How many pine cones didn't fall?
$(7,3)(18,6)(33,14)$

Part Part Whole: Whole Unknown

There were \qquad pine trees and \qquad cedar trees.
How many trees were there altogether?
$(6,3)(11,8)(25,37)$

Compare: Difference Unknown

There were \qquad sparrows and \qquad blackbirds on sitting in the same tree.
How many more sparrows were there than blackbirds?
$(8,3)(14,6)(22,18)$

Multiplication

\qquad children each gathered \qquad pine cones from
the ground. How many pine cones did the
children gather?
$(2,3)(6,4)(5,12)$

Measurement Division

A little boy gave \qquad pinecones to each
of his friends. Altogether, he gave away __ pine cones.
How many friends does the little boy have?
$(2,8)(3,12)(5,25)$

Partitive Division

There were birds sitting in trees.
How many birds were in each tree?
$(8,2)(18,3)(48,12)$

Join: Change Unknown

A little girl had \qquad pine cones. A firend gave her some more pine cones. Then she had \qquad pine cones. How many pine cones did her friend give her?
$(8,12)(23,45)(125,210)$

Separate: Change Unknown

There were \qquad blackbirds in a tree.
Some flew away. Then there were \qquad in the tree.
How many blackbirds flew away?
$(17,9)(26,14)(37,28)$

Part Part Whole: Part Unknown

There were \qquad birds in a tree. \qquad were sparrows.
The rest were blackbirds.
How many blackbirds were there?
$(13,6)(22,10)(37,18)$

Pabbit Dance

an Oneida legend
retold by Desiree Barber

Long ago, two hunters went hunting deer for their village. They hunted for a very long time without seeing any signs of deer, but they didn't return to the village for they knew they had to provide food for the winter.

Suddenly, they heard a very loud thump! They stopped and listened to see if there would be another thump, and sure enough, they heard it again! This time the thump was louder, "THUMP!"

One hunter said to the other, "What is that?"
The other hunter said, "I don't know, but IT sounds very close!"
So, both hunters got on their bellies and crawled to a nearby clearing surrounded by bushes. In the center of the clearing they saw the biggest rabbit they had ever seen!

The first hunter started to aim his bow and arrow at the huge rabbit, but the second hunter stopped him and said, "Let's wait to see what he is going to do."

Both hunters waited and watched the huge rabbit as he lifted one of his big back legs and thumped it three times on the ground. Then, out from every direction hopped regular sized rabbits. The hunters watched very closely not wanting to miss anything.

The little rabbits gathered around the big rabbit, and the big rabbit began to thump his back leg in a pattern as the little rabbits danced. The hunters watched in awe as the rabbits danced. Then the big rabbit thumped his leg in the directions in which the hunters lay. The huge rabbit looked in that direction and leaped into the sky. Then all the rabbits quickly hopped away.

The hunters watched still in awe. They realized they had to go back to the village and tell the people what they had seen and heard. They ran all the way to the village and asked if they could speak to the elders. After they told their story, one of the elders said, "Show us how the beat and the dance went." The hunters showed them exactly what the rabbits did.

Another elder said, "The rabbits gave this dance to tell us to show them respect and appreciation for what they give to us. We will name the dance after them, and we will dance it at our socials to show them our gratitude."

So this is the way it was then and and is now. That is how the rabbit dance came to be.

Desiree Barber

Rabbit Dance

Word Problems

Join: Result Unknown

Big rabbit thumped his leg __ times.
Then he thumped it \qquad more times.
How many times did big rabbit thump his leg?
$(5,6)(12,16)(24,18)$

Separate: Result Unknown

The hunters saw \qquad rabbits in the clearing. of the rabbits hopped away.
How many rabbits stayed in the clearing? $(5,3)(23,13)(25,16)$

Part Part Whole: Whole Unknown
There were \qquad big rabbits and \qquad little rabbits.
How many rabbits were in the clearing altogether?
$(4,3)(9,13)(24,47)$

Compare: Difference Unknown

There were \qquad rabbits and \qquad hunters.
How many more rabbits were there than hunters? $(6,4)(13,7)(23,9)$

Multiplication

There were \qquad groups of rabbits.
Each group had \qquad rabbits.
How many rabbits were there?
$(2,3)(10,7)(11,9)$

Measurement Division

Each rabbit thumped \qquad times.
Altogether there were \qquad thumping sounds.
How many rabbits thumped?
$(2,6)(4,12)(5,35)$

Partitive Division

There were \qquad hunters and \qquad arrows.
Each hunter had the same number of arrows. How many arrows did each hunter have? $(3,6)(4,16)(7,77)$

Join: Change Unknown

Big rabbit was thumping his leg.
He thumped it \qquad times.
How many more times would he have to thump his leg to have thumped it \qquad times?
$(5,8)(9,14)(23,31)$

Separate: Change Unknown

\ldots rabbits were in the clearing.
Some hopped away.
There were \qquad rabbits left.
How many rabbits hopped away?
$(9,5)(19,7)(26,18)$

Part Part Whole: Part Unknown

The hunters saw \qquad rabbits. \qquad of the rabbits were brown and the rest were white.
How many white rabbits did the hunters see?
$(8,3)(28,7)(44,35)$

Compare: Quantity Unknown

There were \qquad rabbits. There were \qquad fewer field mice than rabbits. How many field mice were there? $(9,3)(18,6)(33,19)$

Two-Step Problem

__ hunters each had \qquad arrows.
While hunting, \qquad arrows were lost.
How many arrows did the hunters have when they returned home?
$(3,4,4)(5,11,13)(12,12,14)$

How Beaver and the Dog Helped Each Other

an original story by
Angelia Naquayouma, HoChunk

One day as a beaver was gnawing down trees in the forest he heard a strange rustling sound. At first he was scared, but he was also curious. So, the beaver hid behind a tree to see what animal was making the noise. As he watched, he saw a dog with a strange object wrapped around its head. It was a leather thing that went around the dog's mouth and fastened behind its ears. It was also attached to a strap that went around the dog's neck and then dragged on the earth. The dog was struggling to pull the thing from his head. The beaver was afraid, but he cautiously went up to the dog.
"Please help me get this thing off," the dog pleaded in a muffled voice.
"Of course I will help you," the beaver quickly replied.
He took two chomps with this strong teeth, and the strange strap was off! The dog was very grateful!
"You helped me. How can I help you?" the dog asked.
"Well, will you help me drag this log to my pond?" the beaver replied.
"Of course," the dog answered. He grabbed a limb with his teeth and started to tug, but the log did not budge.
"I guess I'm just going to have to gnaw it into smaller lengths," Beaver said. "It's just too big."
"Wait! I have an idea," the dog said. He took the end of the strap and fastened it to a strong tree branch. He gave Beaver the other end."Pull!" he shouted. The dog also pulled on the strap, and the log slid easily along the ground.

Soon they found themselves on a little hill above the pond. Carefully, they dragged the \log to the edge of the hill and then quickly released the stap as the log started to roll. It rolled right to the edge of the water!
"Wow, that worked great!" the beaver said. "Thanks for helping."
"And, again, thank you for helping me," the dog replied.
So the dog and Beaver thanked each other and went their separate ways.

Angie Naquayouma

How Beaver and the Dog Helped Each Other Word Problems

Join: Result Unknown
The beaver gnawed \qquad twigs from the log. Then he gnawed \qquad more twigs.
How many twigs did he gnaw from the log?
$(5,4)(12,21)(26,17)$

Separate: Result Unknown

There were \qquad logs on the hill. The beaver rolled logs down to the pond.
How many logs are still on the hill?
$(7,3)(27,16)(32,14)$
Part Part Whole: Whole Unknown
There are \qquad birch trees and \qquad poplar trees.
How many trees are there altogether?
$(2,6)(8,9)(36,27)$
Compare: Difference Unknown
There are \qquad poplar trees and \qquad birch trees.
How many more poplar trees are there than birch trees?
$(8,5)(17,9)(43,26)$

Multiplication

The beaver gnawed \qquad twigs from each log.
There were \qquad logs.
How many twigs did the beaver gnaw?

$$
(2,3)(4,6)(6,12)
$$

Measurement Division

The beaver had ___ apples.
He gave ___ apples to each of his friends.
How many friends got apples?

$$
(6,2)(18,6)(44,11)
$$

Partitive Division

The beaver had \qquad apples.
He gave them to \qquad of his friends.He gave each friend the same number of apples. How many apples did each friend get? $(8,2)(24,6)(56,4)$

Join: Change Unknown

In the morning the beaver rolled \qquad logs down the hill to the pond. By late aftenoon, he had rolled ___ logs to the pond. How many logs did he roll down the hill in the afternoon? $(3,7)(9,23)(76,84)$

Separate: Change Unknown

The beaver had \qquad fish. He gave some to the dog. Then he had \qquad fish left. How many fish did he give to the dog ?
$(8,3)(13,24)(35,27)$

Part Part Whole: Part Unknown

There were \qquad trees. \qquad of them were maple trees.
The rest were birch trees.
How many birch trees were there?
$(8,5)(26,24)(48,29)$

Join: Start Unknown

The beaver had some fish. A friend gave him \qquad more fish. Then he had \qquad fish. How many fish did the beaver have before his friend gave him any?

$$
(8,12)(12,23)(36,52)
$$

Two Step Problem

Beaver gnawed down ___ trees.
Each tree had ___ branches.
Beaver used __ branches to plug a hole in his dam. How many branches didn't he use? $(4,4,12)(6,6,14)(7,11,38)$

Maggie Putnam, Stockbridge Munsee

Story Starter

'Write a story telling about this picture. Give your story a title.Also write five math word problems to go along with your story.

Using Native American Number Words to Develop Base Ten Understanding

Language Consultants

Menominee

Rose Schandore and Chris Caldwell
Menominee Historic Preservation Department
Keshena, Wisconsin
Ojibwe
Dennis White
Lac Courte Oreilles Ojibwe School, Hayward, Wisconsin

Oneida
Maria Hinton

Oneida nation Elementary School, Oneida, Wisconsin

ussing native american number wordos to develop base ten understanding

Number words in many Native American languages are base ten specific. Refer to the following examples:

	Number 15	
Ojibwe	Oneida	Menominee midaaswi ashi nanan $(10+5)$
wisk yaw^. le	metatah nianan eneh	
$(5+10)$	$(10+5)$	

When presenting the word problems that accompany the legends in this volume the teacher may replace English number words with Menominee, Ojibwe,or Oneida number words presented in this section. This substitution will provide language practice and also promote the development of base ten understanding.

Word Problem Example

Grandmother picked midaaswi strawberries.
Then she picked naanan more strawberries
How many strawberries did Grandmother pick?

Answer

Grandmother picked midaaswi ashi naanan strawberries.

Number Sentence

Encourage children to also write a number sentence for this problem:

$$
10+5=15
$$

ONEIDA LANGUAGE
 rules for prowunclation

Vowels

Oneida has 6 vowel sounds. Unlike English, each letter stands for one and only one sound.

Vowel	as in
a	like the a in father
e	like the e in egg
i	like the i in ski
o	like the o in hope

The following two vowels are nasalized. That means they are pronounced more through the nose than the usual English sounds.

u	like the u in tune
\hat{u}	like the u in up

Consonants

Most of the consonants have the same sounds as they usually do in English. This is true for:

$$
h, 1, \mathrm{n}, \mathrm{w} \text {, and } \mathrm{y}
$$

The letters ' t ', ' k ', and ' s ' each have two pronunciations depending on the other sounds near them.
t - as in 'water' (normally sounds more like a ' d ') or as in 'top' (if a ' k ', ' h ', or ' s ' follows)
k - as in 'skill' (normally a g-like sound) or as in 'kill' (if a 't', 's', or 'h' follows)
s - as in 'was' (a z-like sound when it comes between two vowels)
or as in 'sea' (before or after an ' h ')

Other Symbols Used in Oneida

? - glottal stop (quickly stopping)
1-above a vowel to show a stressed syllable
. - used after a vowel to show that the vowel is dragged out

ONEIDA NUMBER WORDS

Numbers 1-10

1 - úskah
2 - téken
3 - áhs슬
4 - kayé
5 - wisk
6 - yá. yahk
7 - tsya. ták
8 - téklu?
9 - wá tlu?
10- oye.li

Numbers 11 - 19

Within these numbers, the li ending of the word oye. li (10) changes to le. The word 'yaw .' is used as plus (+).

úska yawn . le	0)
12 - tékni yawn. le	()
13 - áhs ${ }_{\text {¢ }}$ yaw^. le	10)
- kayé yawn. le	$(4+10)$
15 - wisk yaw^. le	$(5+10)$
16 - yá. yahk yaw^. le	$(6+10)$
17 - tsya. ták yawn. le	$(7+10)$
18 - téklu? yaw^. le	$(8+10)$
, tlu?	(9)

Numbers 20-99
'Wash^' (^ pronounced uh) is used to represent 10 in all number words between 20 - 99.
The word 'ni' is used to indicate multiplications of tens.
20 - te wásh슨
30 - áhs^ niwáshㅅ
40 - kaye niwásh슨
50 - wisk niwásh^
60 - yá. yahk niwásh슨
70 - tsya. ták niwáshㅅ
80 - téklu? niwash슷
90 - wá. tlu? niwash스﹎
45 - kayé niwash $_$wisk
52 - wisk niwashㅅ téken

OJibWE LANguage
 RULES FOR PRONUNCLIATION

Ojibwe Alphabet

$\mathrm{a}, \mathrm{aa}, \mathrm{b}, \mathrm{ch}, \mathrm{d}, \mathrm{e}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{ii}, \mathrm{j}, \mathrm{k}, \mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{oo}, \mathrm{p}, \mathrm{s}, \mathrm{sh}, \mathrm{t}, \mathrm{w}, \mathrm{y}, \mathrm{z}, \mathrm{zh}$ and the glottal stop.

Vowels

The English vowels are a, e, i, o and u. The Ojibwe vowels are a, aa, e, i, ii, o, oo.
Four are long: aa, e, ii and oo
Three are short: a, i, and o .
The long and short refer to the amount of time you hold the sound when you say it.
$\mathrm{aa}=\mathrm{ah}, \mathrm{e}=\mathrm{ay}, \mathrm{ii}=\mathrm{ee}, \mathrm{a}=\mathrm{uh}, \mathrm{i}=\mathrm{ih}, \mathrm{o}=$ shorter oh, oo and $\mathrm{oo}=$ longer oh, oo.

Nasal Vowels

These vowels are said through the nose, but you don't have to hold your nose to make this sound.
Vowels can be nasalized and this shown by underlining them or with hooks underneath.
fish (giigoo) or (giigoo).
Some write the nasalization with a -nh in the singular and a-ny in the plural.
(giigoonh, giigoonyag)

Consonants

The letters that aren't vowels are the consonants.
$\mathrm{b}, \mathrm{ch}, \mathrm{d}, \mathrm{g}, \mathrm{h}, \mathrm{j}, \mathrm{k}, \mathrm{m}, \mathrm{n}, \mathrm{p}, \mathrm{s}, \mathrm{sh}, \mathrm{t}, \mathrm{w}, \mathrm{y}, \mathrm{z}, \mathrm{zh}$, and ' (the glottal stop)

The Glottal Stop

This sound cuts off your flow, like in the middle of the English expression (oh oh).
It is written with an apostrophe.
ma'iingan (wolf)

OJIBWE NUMBER WORDS

1 - bezhig
2 - niizh
3 - niswi
4 - niiwin
5 - naanan
6 - (n)ingodwaaswi
7 - niizhwaaswi
9 - zhaangaswi
10 - midaaswi
11 - ashi bezhig
20 - niizhtana
21 - niizhtana ashi bezhig
30 - nisimidana
40 -nimidana
50 - naanimidana
$60-$ (n)ingodwaasimidana

70 - niizhwaasimidana
80-(n)ishwaasimidana
90-zhaangasimidana
100-(n)ingodwaak
101-(n)ingodwaak bezhig
110-(n)ingodwaak midaaswi
111- (n)ingodwaak ashi bezhig
200-niizhwaak
300-niswaak
400-niiwaak
500 - naanwaak
600-(n)ingodwaaswaak
700 - niizhwaaswaak
800-(n)ishwaaswaak
900-zhaangaswaak
1000 - midaaswaak or (n)ingodosagoons

menominee language
 Rules for Pronunciation

Menominee Alphabet

The Menominee language has only 16 letters, they are: achikmnopqstuwy.

Vowels

Vowels are long or short, long vowels being held longer and accented.

Long vowel	as in	short vowel	as in
a	like the a in father	a	like the u in but
o	like the o in wrote	o	like the u in put
e	like the ai in wait	e	like the in in bit
i	like the ee in see	i	like the I in bit (but shorter)
ae	like the a in cat	ae	like the a in cat (but shorter)
u	like the oo in soon	u	like the 00 in soon (but shorter)

Consonants

The consonants are basically the same as English with the exception of the " q " called a glottal stop (the catch in your throat).
consonant as in
c like the ch in church or the "ts" in cats
q A slight catch in your throat like you
were bumped while talking
p like the p in pit
$\mathrm{t} \quad$ likr the t in table
$\mathrm{k} \quad$ like the k in kite
$\mathrm{m} \quad$ like the m in my
$\mathrm{n} \quad$ like the n on not
w like the w in we
y like the y in you
$h \quad$ like the h in he
s like the sh in she

MENOMINEE NUMBER WORDS

Number 1-10
1 - nekot
2 - nis
3 - naeqniw
4-niw
5 - nianan
6 - nekūtuasetah
7 - nöhekan
8 - suasek
9-sākāew
10 - metātah

Numbers 11-19

11-metātah nekot enēh $(10+1)$
12 - metātah nis enēh $(10+2)$
13 - metātah naqniw enēh $(10+3)$
14 - metātah niw enēh $(10+4)$
15 - metātah nianan enēh $(10+5)$
16 - metātah nekūtuasetah eneh $(10+6)$
17 - metātah nōhekan enēh $(10+7)$
18 - metātah suasek enēh $(10+8)$
19 - metātah sākāew enēh $(10+9)$

Numbers 20-31

20 - nis enoh metātah
21 - nis enoh metātah nekot enēh $(2 \times 10)+1$
22 - nīs enoh metātah nis enēh $(2 \times 10)+2$
23 - nis enoh metātah naeqniw enēh $(2 \times 10)+3$
24 - nis enoh metātah nīw enēh (2×10) +4
25 - nís enoh metātah nianan enēh $(2 \times 10)+5$
26 - nìs enoh metãtah nekūtuasetah eneh $(2 \times 10)+6$
27 - nis enoh metātah nōhekan enēh $(2 \times 10)+7$
28 - nis enoh metãtah suasek enēh (2×10) +8
29 - nis enoh metātah sākāew enēh (2×10) +9
30 - naeqniw metātah
31 - naeqniw metātah nekot enēh (3×10) +1

difficult • and most difficult \bullet reasoning. The following chart provides examples of 14 different types of word problems. The
problems are coded for reasoning difficulty: easiest $\boldsymbol{\omega}$. slightly more difficult $* *$, more from easiest to most difficult. Such sequencing allows children to develop mathematical An important aspect of applying this knowledge when teaching is sequencing word problems framework that makes it possible to distinguish among problems in terms of reasoning difficulty. analyses of various problem situations involving number. These problems are organized within a The word problems at the end of each legend in the preceding section are based on detailed

mathematical reasoning and concept mastery.
mathematics instruction based on their students' understanding and guide them toward greater stages of children's mathematical reasoning. This knowledge enables teachers to plan extensively researched approach provides teachers with knowledge about the developmental was developed at the Wisconsin Center for Education Research (Carpenter et al, 1999). This Cognitively Guided Instruction
Cognitively Guided Instruction is an inquiry-based approach to teaching

ตオInD S،yヨHวVGL

SWATGOZd GZVAWOD		
$\mathcal{E I}=\square+\varsigma$ 10 $\square=\varsigma-\mathcal{E}$	$\square=8+\varsigma$	

$$
\begin{aligned}
& \text { Grandtather had } 13 \\
& \text { strawberries. He gave }
\end{aligned}
$$

$$
\begin{aligned}
& \text { strawberries. He gave } 5 \\
& \text { strawberries to Grandmother. }
\end{aligned}
$$

strawberries. How many straw					
Grandmother have altogether?	$\begin{array}{l}\text { rest are small. How many small strawberries does } \\ \text { Grandmother have? }\end{array}$	\& Grandmother has 5 big strawberries and 8 small \bullet Grandmother has 13 strawberries. Five are big and the	PART -PART -WHOLE PROBLEMS		
:---	:---	:---:			
Part-Part-Whole: Whole Unknown (PPW:WU)	Part-Part-Whole: Part Unknow (PPW:PU)				

berries does Grandfather have
$\square=\varsigma-\varepsilon I$

 Кикш мон ұғә sә!цәqмедя әшоs реч ләцреғриелы	 	 ς วлебิ วН 'sәциәqмеця ЕI реч ләцдеғриеюю
SWGTgOUd ЭNILVYVdGS		
$\mathcal{E} I=8+$ p!p soluaqмедя кивш мон әшоя реч ләчошриеш	$\mathfrak{E} \mathfrak{I}=\square+\mathfrak{\varsigma}$ ¿гәчюоиривіл Кивш моН 'sә! £I реч ләчоошриелџ иәчц 	$\square=8+\varsigma$ ¿мои әлвч ләчюоириеіп sәop sә! цәqмепи Кивu әлв ς реч лччоириегы

$$
\begin{array}{l|l}
8-5=\square \text { or } 5+\square=8 & 5+3=\square
\end{array}
$$

$$
\mathcal{S}=\square-\mathcal{E} L
$$(กУS)

 SW'TGOUd DNILVEVAGS

$$
\begin{aligned}
& \text { strawberries. How many } \\
& \text { strawberries did Grandfather give } \\
& \text { Grandmother? }
\end{aligned}
$$عI рец ләцдоириедр иәपL

*****:*********

 CDU direct modeling situation:
 determine the difference. Solving the second problem relies on the child's ability to to set out the two quantities, lining them up side by side, and then match them to modeling. When modeling this problem with counters, a young child might choose
 tally marks, drawings, or by manipulating counters, the problem is easier. The firs can be directly modeled, that is, represented in some concrete way on fingers, with

> Grandfather gave 3 strawberries to Grandmother. He had 8 strawberries.
> How many strawberries does Grandfather have now?

more thought to make sense of the question being asked. that s /he is giving strawberries away. The second problem is more difficult because it requires For example, the first of the following two problems is easier. Here the child can actually pretend

problems to use during instruction. These factors include the following: independently. Understanding these factors helps the teacher decide which word number of factors influence whether a problem is appropriate for a child to solve without having to rely on having a teacher tell them how to do it. However, a independent problem solvers who are able to approach and solve word problems

UNDERSTANDING THE STRUCTURE OF WORD PROBLEM

 quantity to the total quantity will respond to the second question with, "Some
Grandmother had some strawberries."

 combined parts make up the total. For this reason, the first of the following two
 had many experiences with solving problems and have developed an understanding

> Partitive Division problem: If Grandfather shares12 strawberries with 3 friends, how many strawberries will each friend get?
 Measurement Division problem:
Grandmother has 4 piles of strawberries. There are 3 strawberries
in each pile. How many strawberries does Grandmother have?
:шәңолд ио!̣еэ!!д!̣пи
quantities within the context of words and to make sense of the question being
asked. These experiences will allow them to develop the ability to think about numerical children first solve many problems involving joining and separating situations Very young children can solve low number multiplication and division problems
because such problems can be easily modeled. However, it is important that

- 280 provided in the following sections.
 relationships among the different types of word problems (discussed in the previous
sections) and the developmental stages of children’s thinking. Detailed descriptions

It is important to emphasize that these processes are intuitive, ones that are not
taught to the student by a teacher.

$$
\begin{aligned}
& \text { SSU location of unknown at start of problem: }(--\mathbf{3}=\mathbf{5}) \\
& \text { Grandfather had some strawberries. He gave } 3 \text { strawberries to Grandmother. } \\
& \text { Then he had } 5 \text { strawberries left. How many strawberries did Grandfather } \\
& \text { have before sharing with Grandmother? }
\end{aligned}
$$

 SCU location of unknown in middle of problem: (8-_=5)

mentally manipulating quantities. need to use manipulatives. Rather, the child will use his or her own unique way of situation, and plan a solution. When a child is able to do these steps s/he will not develops, s/he becomes able to make sense of the entire question, represent the
 below) are more difficult. quantity in the middle (second example below) or at the beginning (third example the end (first example below) are easier to solve. Problems with the missing problems that are worded in such a way so that the unknown quantity is located at
Because young children solve problems in the order that they hear them,

The Location of the Unknown Influences

It's eleven." $\begin{array}{ll}\text { I took one from the six to make five. } & \text { but I started with eleven. The answer must } \\ \text { But I must add the one back on. } & \text { be one more. It's six." }\end{array}$

child frequently visualizes the quantities and solves the problem with mental math. often breaking numbers down and recombining them by using known facts. This
A child possessing good number sense is able to solve problems in flexible ways,

III ןəләТ ןејшәшdоןəләの

up a finger with each count.)
"I have eleven." nine, ten, eleven'." (Child holds I just have to add five to it.
I say, 'Seven, eight, "I don't have to count the six again.
I just have to add five to it.

Child's Solution to JRU
Unknown (SRU) problems (problems given above)) using counting strategies. examples the child solves the Join Result Unknown (JRU) and Separate Result modeled on his/her fingers without having to recount the fingers. In the following

A child at this level is able to immediately recognize groups such as the amount
is added or subtracted using fingers, tally marks, or counters.
mind and count on or back from that number while keeping track of the quantity that
A child using a Counting On/Back strategy is able to hold a number in her/his

צэрg/ио 6и!̣ипоว

 Developmental Level II Grandmother had 8 strawberries. She gave some to Grandfather.
Now Grandmother has 3 strawberries.
How many strawberries did she give to Grandfather? -şวә!qо

шәчолд ก\&S the answer.
 The child constructs (with manipulatives or drawing) a set of three
Objects are added to this set until there is a total of eight objects.
OL-su!̣o :uounlos
How many strawberries did Grandfather give her? Now Grandmother has 8 strawberries
Grandmother has 5 strawberries. Grandfather gave her some more strawberries.
JCU Problem of the two combined sets is counted.
The child constructs (with manipulatives or drawing) a set of three objects IIV-su!of :uounnos
strawberries does Grandfather have now? JRU Problem

Direct Modeling Strategies

at each developmental level are provided in this section. problem types requires different reasoning processes. Examples of these processes determined by the problem situation posed to the child. Each of the 14 different

Matching Solution Strategies to Problem Types

Grandfather had 3 strawberries. Grandmother gave him 5 more strawberries.
How many strawberries does Grandfather have now?

$$
\begin{aligned}
& \text { Grandmother had some strawberries. Grandfather gave him } 3 \text { more. } \\
& \text { Now he has } 8 \text { strawberries. } \\
& \text { How many strawberries did Grandmother have to start with? }
\end{aligned}
$$ needs more experience modeling solutions. sense of counting strategies, the child is not developmentally ready to use them and These strategies will develop intuitively over time. If a child is not able to make quantity, that is, that a number can be stated rather than represented concretely.

quantities in the problem concretely. S/he has learned that a number names a

sว!бวұрия צэрg/ио Би!̣ипоว
 II ІӘләТ

$$
\begin{aligned}
& \text { one set is used up. The answer is the number of unmatched objects } \\
& \text { remaining in the larger set }
\end{aligned}
$$

Grandfather had 3 strawberries. Grandmother gave him 5 more strawberries.
How many strawberries does Grandfather have now?
different initial set is tried.
Solution: Trial-and-Error

[^0] -рәлошәд sұכә!qо эо
 A set of eight objects is counted out. Objects are removed from the set until Solution: Joins-To
A set of objects is constructed. A set of three objects is added to or
removed, and the resulting set is counted. If the final count is eight, then
the number of objects in the initial set is the answer. If it is not right, then a
\[

$$
\begin{aligned}
& \text { шәq0лd ПSf } \\
& \text { remaining in the larger set }
\end{aligned}
$$
\]

fact would be，＂I know that nine plus four is thirteen because nine and one is ten
and three more is thirteen．＂
 solves problems using number facts and derived facts（combines familiar quantities

sว！ฺวฉрия Би！̣！！วの

III［əләТ

 The child uses a backward counting sequence starting with 8 and continues

 шәqosd $\cap \supset S$ ：дәqшии јхәи әчъ
 The child uses a backward counting sequence starting from eight．The имоの－sұunoう：：ио！̣пºs
How many strawberries does Grandfather have now？ SRU Problem

 Grandmother had 3 strawberries．Grandfather gave her some more
strawberries．Now Grandmother has 8 strawberries． JCU Problem
or fingers．The answer is the last number in the counting sequence The child begins with 5 （the larger quantity and continues on for 3 more
counts（keeping track of counts with manipulatives，tallies， Solution：Counts－On－From－Larger
as another strategy for solving problems
 looking for numerical relationships．When introduced to the standard procedure，this the stages described in the preceding section，a child will develop the habit of relationships among numbers within procedures．When allowed to progress through children merely memorize them．They never develop an understanding of the
 the standard symbolic procedures typically taught in the elementary school．Standard

SG甘ก【GコO甘d OITOGWXS

mathematical reasoning mathematical reasoning described in this manual develop both number sense and number sense．Children who have been allowed to progress through the stages of relationship between quantities；they lack mathematical reasoning in relation to often are able to recite facts but lack understanding that a fact represents a practice of rote drill for memorization of facts．Children in drill／skill classrooms knowledge to solve problems．This developmental approach differs from the counting strategies，and eventually，as number facts are learned，children apply this When children begin to solve problems intuitively，they concretely represent the
relationships in the problem．Over time，concrete strategies are abstracted to

To schedule a Cognitively Guided Instruction
 National Council of Teachers of Mathematics. (1998). Teaching standards for school mathematics. Reston, VA:
 Fennema, E., Carpenter, T. P., Levi, L., Franke, M. L., \& Empson, S. (1997). Cognitively guided instruction:

Brown, J. S., \& Newman, S. (1989). Cognitive apprenticeships: Teaching the craft of reading, writing, and
mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser
Hillsdale, NJ: Erlbaum. penter, T.P., Fennema, E. Franke, M.L., Levi, L., and Empson, S.B. (1999). Children's Mathematics:
Cognitively Guided Instruction. Portsmouth, NH: Heineman.Collins, A., Carpenter, T.P., Fennema, E. Franke, M.L., Levi, L., and Empson, S.B. (1999). Children's Mathematics: teachers. In W. Secada (Ed.), Curriculum reform: The case of mathematics in the United States. Special issue of

Carpenter, T. P., \& Fennema, E. (1992). Cognitively guided instruction: Building on the knowledge of students and
equitable classrooms. In W. Secada, E. Fennema, \& L. Byrd (Eds.). New directions in equity for mathematics Carey, D. A., Fennema, E., Carpenter, T. P., \& Franke, M. L. (1993). Cognitively guided instruction: Towards A., \& Brooks, M. G. (1993). In search of understandin

Brooks, J. G., \& Brooks, M. G. (1993). In search of understanding: The case for constructivist classrooms. References

$$
\begin{aligned}
& \text { Dr. Judith Hankes } \\
& \text { University of Wisconsin Oshkosh } \\
& \text { Curriculum and Instruction }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Curriculum and Instruction } \\
& \text { Oshkosh, WI } 54901 \\
& \text { (920) 424-7254 }
\end{aligned}
$$

:ұэедиоэ әsеәј ‘dочяч.гом

-

 IT aney of paəu ay səop s7ey ajoul Kueul moh sfey t sey urpy 		

> 4．Megan had some markers．She gave 6 to Janice．Now she has 9
markers left．How many markers did she have to start with？

$$
\begin{aligned}
& \text { 1. Josh had } 6 \text { cookies. His mom } \\
& \text { does Josh have altogether? }
\end{aligned}
$$

$$
-\frac{\text { urəTqOJe }}{\text { 7XTपS }}
$$

$$
\begin{gathered}
\text { I पot7コəs } \\
\text { sṬKโEน゙甘 oapTA }
\end{gathered}
$$

Г丂

Кริวยามร		adM uriqued
Кธัวยมร		ədK ${ }_{1}$ mepqord
Коәщепя		adK1 mequad

11 children were playing in the sandbox. Some children went home. There were 3 children still playing in
the sandbox. How many children went home?

Квәнедs

Willie has 12 crayons. Lucy has 7 crayons. How many more crayons does Lucy have than Wiilie?

_
Max had some money. He spent $\$ 9$ on a video game. Now he has $\$ 11$ dollars. How much money did Max
have to start with?
$\begin{array}{ll}\text { problem type } & \text { developmental level strategy } \\ \text { Problem 4 } & \end{array}$
developmental level

Janelle has 7 trolls in her collection. How many more does she have to buy to have 11 trolls? Problem 3 | problem type | developmental level | strategy |
| :--- | :--- | :--- |

$$
\text { TJ has } 13 \text { chocolate chip cookies. At lunch he ate } 5 \text { of them. How many cookies did TJ have left? }
$$

problem type	developmental level

Lucy has 8 fish. She wants to buy 5 more fish. How many fish would Lucy have then?
Problem 1 Interview Video Analysis
Interview

lollipops does he have now? His mother gave him 5 more
lollipops. How many Francis had 8 lollipops the bus?山o are skoq Kueu moh on the bus. 6 are girls
and the rest are boys.
 How many more shells
does Albert need to find
to have 11 shells altogether? How many more shells
does Ann have to pick
to have 12 flowers? How many more flowers Ann has 8 flowers.

Mark have left?
How many fish does
Mark had 12 fish. He
did Diane have to start with?

Now she has 8 kittens
She sold 5 kittens.
coes Mary have lett? She ate 4 gumballs.
How many gumballs Mary had 11 gumballs.
She ate 4 gumballs.
¿4l! Meis ol aney aus p!p sajdde kuew mOH MON wout to s ale aus səןdde әшos peч uə!pp on the soccer team? How many children are u
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3 There are 8 girls and

birds were left?
 Six flew away. How many

does Matt have than Tina?

Tina has 3 flowers.
Matt has 11 flowers
does he have? little. How many little dogs 8 are big and the rest are Mr. Smith has 12 dogs.

Doug have than Jan? many more snakes does MOH SayEus 8 sey uer altogether? pick to have 13 apples does Chris need to How many more apples -saldde ¢ sey s!uuo

[^1]Justin had 11 cookie

Christopher is feeding pigeons. He has 24 pieces of
white bread. If he alloos 3 pieces of bread for each
pigeon, how many pigeons can he feed?
Lila lives in a house with 13 rooms. Her art collection
contains 42 paintings. She would Iike to hang the same
number of paintings in each room of her house. How many
paintings will she put in each room?
Tina has 14 lemons. She needs 2 lemons to make a
pitcher of lemonade. How many pitchers of lemonade
can she make with her 14 lemons?
Eric has 24 jelly beans to share with his ${ }^{3}$ iriends.
There are four people whe are going to eat he jelly
beans. If each person gets the same numbor jof jelly
beans, how many jelly beans will each person get?
There are 7 cars to take Ms. Lee's class to the zeo.
Ms. Lee has 2s children in her class. How many
children will ride in each car?
> on each paga
> Andy has 8 pages of stiekers. There are ${ }^{18}$ stickers
on each page. How many stickers does Andy have

Elver broughpue exactiy 9 ilowers in each vase, how
he wante to pases does he need to hold his flowers?
mater Elver brought home 36 flowers for his parents. If in each box? his insects. into. If he puts the same number of
insects inte each box, how many insects will be pillows can she make? Linda bought 27 yards of material to make pillows
If each pillow uses 3 yards of material, how many shelf there arek shelf?
have on his book Phillip has book shelves in his bedroom. on each
shelf there are g books. How many books does phillip

11

11

11

$1 \|$

11

1

11

—

Problem	Multiplication	Measurement Division	Partitive Division
Grouping/ Partitioning	Gene has 4 tomato plants. There are 6 tomatoes on each plant. How many tomatoes are there altogether?	Gene has some tomato plants. There are 6 tomatoes on each plant. Altogether there are 24 tomatoes. How many tomato plants does Gene have?	Gene has 4 tomato plants. There are the same number of tomatoes on each plant. Altogether there are 20 tomatoes. How many tomatoes are there on each tomato plant?
Rate	Ellen walks 3 miles an hour. How many miles does she walk in 5 hours?	Ellen walks 3 miles an hour. How many hours will it take her to walk 15 miles?	Ellen walked 15 miles. It took her 5 hours. If she walked the same speed the whole way, how far did she walk in one hour?
Price	Pier cost $\$ 4$ each. How much do 7 pies cost?	Pies cost 54 each. How many pies can you buy for $\$ 28$?	Jan bought 7 pies. He spent a total of \$28. If each pie costs the same amount, how much does one pie cost?
Multiplicative Comparison	The giraffe in the 200 is 3 times as tall as the kangaroo. The kangaroo is 6 feet tall. How tall is the giraffe?	The giraffe is 18 feet tall. The kangaroo is 6 feet tall. The giraffe is how many times taller than the kangaroo?	The giraffe is 18 feet tall. She is 3 times as tall as the kangaroo. How tall is the kangaroo?

Figure 2.6 Classification of Word Problems

[^0]: CDU Problem

[^1]: Lynn. How many cookies
 does Justin have lett?
 Lynn. How many cookies
 does Justin have left?

